
THREE

Latent Class Cluster Analysis

Jeroen K. Vermunt and Jay Magidson

1. INTRODUCTION

Kaufman and Rousseeuw (1990) define cluster analysis as the classifica-
tion of similar objects into groups, in which the number of groups as well
as their forms are unknown. The form of a group refers to the parameters
of cluster; that is, to its cluster-specific means, variances, and covariances
that also have a geometrical interpretation. A similar definition is given by
Everitt (1993), who speaks about deriving a useful division into a num-
ber of classes, in which both the number of classes and the properties
of the classes are to be determined. These could also be definitions of
exploratory latent class (LC) analysis, in which objects are assumed to
belong to one of a set of K latent classes, with the number of classes and
their sizes not known a priori. In addition, objects belonging to the same
class are similar with respect to the observed variables in the sense that
their observed scores are assumed to come from the same probability
distributions, whose parameters are, however, unknown quantities to be
estimated. Because of the similarity between cluster and exploratory LC
analysis, it is not surprising that the latter method is becoming a more
popular clustering tool.

In this paper, we describe the state-of-the-art in the field of LC
cluster analysis. Most of the work in this field involves continuous in-
dicators assuming (restricted) multivariate normal distributions within
classes. Although authors seldom refer to the work of Gibson (1959) and
Lazarsfeld and Henry (1968), actually they are using what these authors
called latent profile analysis: that is, latent structure models with a sin-
gle categorical latent variable and a set of continuous indicators. Wolfe
(1970) was the first one who made an explicit connection between LC and
cluster analysis.
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Throughout the 1990s there was a renewed interest in the applica-
tion of LC analysis as a cluster analysis method. Labels that are used
to describe such a use of LC analysis are as follows: mixture-likelihood
approach to clustering (McLachlan and Basford, 1988; Everitt, 1993),
model-based clustering (Banfield and Raftery, 1993; Bensmail et al., 1997;
Fraley and Raftery, 1998a, 1998b), mixture-model clustering (Jorgensen
and Hunt, 1996; McLachlan et al., 1999), probabilistic clustering (Bacher,
2000), Bayesian classification (Cheeseman and Stutz, 1995), unsupervised
learning (McLachlan and Peel, 1996), and latent class cluster analysis
(Vermunt and Magidson, 2000). Probably the most important reason of
the increased popularity of LC analysis as a statistical tool for cluster
analysis is the fact that currently high-speed computers make these com-
putationally intensive methods practically applicable. Several software
packages are available for the estimation of LC cluster models.

An important difference between standard cluster analysis techniques
and LC clustering is that the latter is a model-based clustering approach.
This means that a statistical model is postulated for the population from
which the sample under study is taken. More precisely, it is assumed
that the data are generated by a mixture of underlying probability dis-
tributions. When using the maximum-likelihood method for parameter
estimation, the clustering problem involves maximizing a log-likelihood
function. This is similar to standard nonhierarchical cluster techniques in
which the allocation of objects to clusters should be optimal according
to some criterion. These criteria typically involve minimizing the within-
cluster variation and/or maximizing the between-cluster variation. An
advantage of using a statistical model is, however, that the choice of the
cluster criterion is less arbitrary. Nevertheless, the log-likelihood func-
tions corresponding to LC cluster models may be similar to the criteria
used by certain nonhierarchical cluster techniques like k means.

LC clustering is very flexible in the sense that both simple and compli-
cated distributional forms can be used for the observed variables within
clusters. As in any statistical model, restrictions can be imposed on the
parameters to obtain more parsimony and formal tests can be used to
check their validity. Another advantage of the model-based clustering ap-
proach is that no decisions need be made about the scaling of the observed
variables; for instance, when working with normal distributions with un-
known variances, the results will be the same irrespective of whether
the variables are normalized. This is very different from standard non-
hierarchical cluster methods, in which scaling is always an issue. Other
advantages are that it is relatively easy to deal with variables of mixed
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measurement levels (different scale types) and that there are more formal
criteria to make decisions about the number of clusters and other model
features.

LC analysis yields a probabilistic clustering approach. This means that
although each object is assumed to belong to one class or cluster, it is taken
into account that there is uncertainty about an object’s class membership.
This makes LC clustering conceptually similar to fuzzy clustering tech-
niques. An important difference between these two approaches is, how-
ever, that in fuzzy clustering an object’s grades of membership are the
“parameters” to be estimated (Kaufman and Rousseeuw, 1990), whereas
in LC clustering an individual’s posterior class-membership probabilities
are computed from the estimated model parameters and his or her ob-
served scores. This makes it possible to classify other objects belonging
to the population from which the sample is taken, which is not possible
with standard fuzzy cluster techniques.

The remainder of this chapter is organized as follows. The next section
discusses the LC cluster model for continuous variables. Subsequently,
attention is paid to models for sets of indicators of different measurement
levels, also known as mixed-mode data. Then an explanation is given of
how to include covariates in an LC cluster model. After a discussion of
estimation and testing, two empirical examples are presented. The paper
ends with a short discussion. An appendix describes computer programs
that implement the various kinds of LC clustering methods presented in
this chapter.

2. CONTINUOUS INDICATOR VARIABLES

The basic LC cluster model has the form

f (yi | θ) =
K

∑

k=1

πk fk(yi | θk) .

Here, yi denotes an object’s scores on a set of observed variables, K is the
number of clusters, and πk denotes the prior probability of belonging to
latent class or cluster k or, equivalently, the size of cluster k. Alternative
labels for the y’s are indicators, dependent variables, outcome variables,
outputs, endogenous variables, or items. As can be seen, the distribution
of yi given the model parameters of θ , f (yi | θ), is assumed to be a mixture
of class-specific densities, fk(yi | θk).

Most of the work on LC cluster analysis has been done for contin-
uous variables. Generally, these continuous variables are assumed to be



92 Jeroen K. Vermunt and Jay Magidson

normally distributed within latent classes, possibly after applying an ap-
propriate nonlinear transformation (Lazarsfeld and Henry, 1968; Banfield
and Raftery, 1993; McLachlan, 1988; McLachlan et al., 1999; Cheeseman
and Stutz, 1995). Alternatives for the normal distribution are student,
Gompertz, or gamma distributions (see, e.g., McLachlan et al., 1999).

The most general Gaussian distribution of which all restricted versions
discussed later are special cases is the multivariate normal model with
parameters µk and #k. If no further restrictions are imposed, the LC clus-
tering problem involves estimating a separate set of means, variances, and
covariances for each latent class. In most applications, the main objective
is finding classes that differ with respect to their means or locations. The
fact that the model allows classes to have different variances implies that
classes may also differ with respect to the homogeneity of the responses to
the observed variables. In standard LC models with categorical variables,
it is generally assumed that the observed variables are mutually indepen-
dent within clusters. This is, however, not necessary here. The fact that
each class has its own set of covariances means that the y variables may be
correlated with clusters, as well as that these correlations may be cluster
specific. So, the clusters not only differ with respect to their means and
variances, but also with respect to the correlations between the observed
variables.

It will be clear that as the number of indicators and/or the number
of latent classes increases, the number of parameters to be estimated in-
creases rapidly, especially the number of free parameters in the variance–
covariance matrices, #k. Therefore, it is not surprising that restrictions
that are imposed to obtain more parsimony and stability typically involve
constraining the class-specific variance–covariance matrices.

An important constraint model is the local independence model ob-
tained by assuming that all within-cluster covariances are equal to zero
or, equivalently, by assuming that the variance–covariance matrices, #k,
are diagonal matrices. Models that are less restrictive than the local inde-
pendence model can be obtained by fixing some but not all covariances
to zero or, equivalently, by assuming certain pairs of y’s to be mutually
dependent within latent classes.

Another interesting type of constraint is the equality or homogeneity
of variance–covariance matrices across latent classes, that is, #k = #.
Such a homogeneous or class-independent error structure yields clusters
having the same forms but different locations. Note that these kinds of
equality constraints can be applied in combination with any structure
for #.



Latent Class Cluster Analysis 93

Banfield and Raftery (1993) proposed reparameterizing the class-
specific variance–covariance matrices by an eigenvalue decomposition:

#k = λkDk AkDk
T .

The parameter λk is a scalar, Dk is a matrix with eigenvectors, and Ak

is a diagonal matrix whose elements are proportional to the eigenvalues
of #k. More precisely, λk = |#k|1/d, where d is the number of observed
variables and Ak is scaled such that |Ak| = 1.

A nice feature of this decomposition is that each of the three sets
of parameters has a geometrical interpretation: λk indicates what can be
called the volume of cluster k, Dk is the orientation of cluster k, and Ak is
the shape of cluster k. If we think of a cluster as a clutter of points in a
multidimensional space, the volume is the size of the clutter, whereas the
orientation and shape parameters indicate whether the clutter is spherical
or ellipsoidal. Thus, restrictions imposed on these matrices can directly
be interpreted in terms of the geometrical form of the clusters. Typically,
matrices are assumed to be class-independent, and/or simpler structures
(diagonal or identity) are used for certain matrices. See Bensmail et al.
(1997) and Fraley and Raftery (1998b) for overviews of the many possible
specifications.

Rather than by a restricted eigenvalue decomposition, the structure
of the #k matrices can also be simplified by means of a covariance-
structure model. Several authors have proposed using LC models for
dealing with unobserved heterogeneity in covariance-structure analysis
(Arminger and Stein, 1997; Dolan and Van der Maas, 1997; Jedidi, Jagpal,
and DeSarbo, 1997). The same methodology can be used to restrict the
error structure in LC cluster analysis with continuous indicators. An inter-
esting structure for #k, which is related to the eigenvalue decomposition
described earlier, is a factor analytic model (Yung, 1997; McLachlan and
Peel, 1999); that is,

#k = %k&k%k + Uk . (1)

Here, %k is a matrix with factor loadings, &k is the variance–covariance
matrix of the factors, and Uk is a diagonal matrix with unique variances.
Restricted versions can be obtained by limiting the number of factors (e.g.,
to one) and/or fixing some factor loading to zero. Such specifications make
it possible to describe the correlations between the y variables within
clusters or, equivalently, the structure of local dependencies, by means of
a small number of parameters.
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3. MIXED INDICATOR VARIABLES

In the previous section, we concentrated on LC cluster models for continu-
ous indicators by assuming a (restricted) multivariate normal distribution
for yi within each of the classes. Often however, we are, confronted with
other types of indicators, such as nominal or ordinal variables or counts.
LC cluster models for nominal and ordinal variables assuming (restricted)
multinomial distributions for the items are equivalent to standard ex-
ploratory LC models (Goodman, 1974; Clogg, 1981, 1995). Böckenholt
(1993) and Wedel et al. (1993) proposed LC models for Poisson counts.

With the use of the general structure of the LC model, it is straight-
forward to specify cluster models for sets of indicators of different scale
types or, as Everitt (1988, 1993) called it, for mixed-mode data (see also
Lawrence and Krzanowski, 1996; Jorgensen and Hunt, 1996; Bacher, 2000;
and Vermunt and Magidson, 2000; pp. 147–52). With an assumption of
local independence, the LC cluster model for mixed y’s is of the form

f (yi | θ) =
K

∑

k=1

πk

J
∏

j=1

fk(yi j | θ jk) , (2)

where J denotes the total number of indicators and j is a particular
indicator.

Rather than specifying the joint distribution of yi given class member-
ship by using a single multivariate distribution, we now have to specify
the appropriate univariate distribution function for each element yi j of
yi . Possible choices for continuous yi j are univariate normal, student,
gamma, and log-normal distributions. A natural choice for discrete nom-
inal or ordinal variables is the (restricted) multinomial distribution. Suit-
able distributions for counts are, for instance, Poisson, binomial, or neg-
ative binomial.

In the previously mentioned specification, we assumed that the ys are
conditionally independent within latent classes. This assumption can eas-
ily be relaxed by using the appropriate multivariate rather than univariate
distributions for sets of locally dependent y variables. It is not necessary to
present a separate formula for this situation; we merely think of the index
j in Equation (2) as denoting a set of indicators rather than a single indica-
tor. For sets of continuous variables, we can again work with a multivariate
normal distribution. A set of nominal/ordinal variables can combined into
a (restricted) joint multinomial distribution. Correlated counts could be
modeled with a multivariate Poisson model. More difficult is the specifica-
tion of the mixed multivariate distributions. Krzanowski (1983) described
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two possible ways of modeling the relationship between a nominal/ordinal
and a continuous y: by means of a conditional Gaussian or by means of a
conditional multinomial distribution, which means either using the cate-
gorical variable as a covariate in the normal model or the continuous one
as a covariate in the multinomial model.

Lawrence and Krzanowski (1996) and Hunt and Jorgensen (1999)
used the conditional Gaussian distribution in LC clustering with combi-
nations of categorical and continuous variables. Local dependencies with
a Poisson variable could be dealt with in the same way, that is, by allowing
its mean to depend on the relevant continuous or categorical variable(s).
The possibility of including local dependencies between indicators is very
important when using LC analysis as a clustering tool. First, it prevents
that one ends with a solution that contains too many clusters. Often, a
simpler solution with less clusters is obtained by including a few direct
effects between y variables. It should be stressed that there is also a risk of
allowing for within-cluster associations: direct effects may hide relevant
clusters.

A second reason for relaxing the local independence assumption is
that it may yield a better classification of objects into clusters. Saying
that two variables are locally dependent is conceptually the same as say-
ing that they contain some overlapping information that should not be
used when determining to which class an object belongs. Consequently,
if we omit a significant bivariate dependency from an LC cluster model,
the corresponding locally dependent indicators get a too-high weight in
the classification formula [see Equation (3)] compared with the other
indicators.

4. COVARIATES

The LC cluster modeling approach described previously is quite general:
It deals with mixed-mode data and it allows for many different specifica-
tions of the (correlated) error structure. An important extension of this
model is the inclusion of covariates to predict class membership. Concep-
tually, it makes quite a bit of sense to distinguish (endogenous) variables
that serve as indicators of the latent variable from (exogenous) variables
that are used to predict to which cluster an object belongs. This idea is, in
fact, the same as in Clogg’s (1981) latent class model (LCM) with external
variables.

Note that in certain situations we may want to use the LC variable as
a predictor of an observed response variable rather than as a dependent
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variable. For such situations, we do not need special arrangements such
as those needed with covariates. A model in which the cluster variable
serves as predictor can be obtained by using the response variable as one
of the y variables.

With the use of the same basic structure as in Equation (2), this yields
the following LC cluster model:

f (yi | zi , θ) =
K

∑

k=1

πk|zi

J
∏

j=1

fk(yi j | θ jk) .

Here, zi denotes object i ’s covariate values. Alternative terms for the zs
are concomitant variables, grouping variables, external variables, exoge-
nous variables, and inputs. For the number of parameters to be reduced,
the probability of belonging to class k given covariate values zi , πk|zi , will
generally be restricted by a multinomial logit model, that is, a logit model
with “linear effects” and no higher-order interactions.

An even more general specification is obtained by allowing covariates
to have direct effects on the indicators, which yields

f (yi | zi , θ) =
K

∑

k=1

πk|zi

J
∏

j=1

fk(yi j | zi , θ jk) .

The conditional mean of the y variables can now be related directly to
the covariates. This makes it possible to relax the implicit assumption in
the previous specification that the influence of the zs on the ys goes com-
pletely by the latent variable. For an example, see Vermunt and Magidson
(2000, p. 155).

The possibility to have direct effects of zs on ys can also be used to
specify direct effects between indicators of different scale types by means
of a simple trick: one of the two variables involved should be used both
as covariate (not influencing class membership) and as indicator. We use
this trick next in our second example.

5. ESTIMATION

The two main methods to estimate the parameters of the various types
of LC cluster models are the maximum-likelihood (ML) method and
the maximum-posterior (MAP) method. Wallace and Dowe (forthcom-
ing) proposed a minimum message length (MML) estimator, which in
most situations is similar to the MAP method. The log-likelihood func-
tion required in the ML and MAP approaches can be derived from the
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probability density function defining the model. Bayesian MAP estima-
tion involves maximizing the log-posterior distribution, which is the sum
of the log-likelihood function and the logs of the priors for the parameters.

Although generally there is not much difference between ML and
MAP estimates, an important advantage of the latter method is that it
prevents the occurrence of boundary or terminal solutions; probabilities
and variances cannot become zero. With a very small amount of prior in-
formation, the parameter estimates are forced to stay within the interior
of the parameter space. Typical priors are Dirichlet priors for multinomial
probabilities and inverted-Wishart priors for the variance–covariance ma-
trices in multivariate normal models. For more details on these priors, see
Vermunt and Magidson (2000, pp. 164–65).

Most software packages use the expectation–maximization (EM) al-
gorithm or some modification of it to find the ML or MAP estimates. In
our opinion, the ideal algorithm is starting with a number of EM itera-
tions and, when close enough to the final solution, switching to Newton–
Raphson. This is a way to combine the advantages of both algorithms,
that is, the stability of EM even when far away from the optimum and the
speed of Newton–Raphson when close to the optimum.

A well-known problem in LC analysis is the occurrence of local so-
lutions. The best way to prevent ending with a local solution is to use
multiple sets of starting values. Some computer programs for LC cluster-
ing have automated the search for good starting values by using several
sets of random starting values as well as solutions obtained with other
cluster methods.

In the application of LC analysis to clustering, we are not only in-
terested in the estimation of the model parameters; another important
“estimation” problem is the classification of objects into clusters. This
can be based on the posterior class-membership probabilities

πk|yi ,zi , = πk|zi

∏

j

fk(yi j | zi , θ jk)
/

∑

k

πk|zi

∏

j

fk(yi j | zi , θ jk) . (3)

The standard classification method is modal allocation, which amounts to
assigning each object to the class with the highest posterior probability.

6. MODEL SELECTION

The model selection issue is one of the main research topics in LC
clustering. Actually, there are two issues: the first concerns the deci-
sion about the number of clusters; the second concerns the form of the
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model given the number of clusters. For an overview on this topic, see
Celeux, Biernacki, and Govaert (1997).

Assumptions with respect to the forms of the clusters given their num-
ber can be tested by using standard likelihood-ratio tests between nested
models, for instance, between a model with an unrestricted covariance
matrix and a model with a restricted covariance matrix. Wald tests and
Lagrange multiplier tests can be used to assess the significance of cer-
tain included or excluded terms, respectively. It is well known that these
kinds of chi-squared tests cannot be used to determine the number of
clusters.

The most popular set of model selection tools in LC cluster analysis are
information criteria such as Akaike, Bayesian, and consistent Akaike in-
formation criteria, or AIC, BIC, and CAIC (Fraley and Raftery, 1998b).
The most recent development is the use of computationally intensive
techniques such as parametric bootstrapping (McLachlan et al., 1999)
and Markov chain Monte Carlo methods (Bensmail et al., 1997) to deter-
mine the number of clusters and their forms. Cheeseman and Stutz (1995)
proposed a fully automated model selection method using approximate
Bayes factors (different from BIC).

Another set of methods for evaluating LC cluster models is based
on the uncertainty of classification or, equivalently, the separation of the
clusters. Aside from the estimated total number of misclassifications, the
Goodman–Kruskal lambda, the Goodman–Kruskal tau, or entropy-based
measures can be used to indicate how well the indicators predict class
membership. Celeux et al. (1997) described various indices that combine
information on model fit and information on classification errors, two of
which are the classification likelihood (C) and the approximate weight of
evidence (AWE).

7. TWO EMPIRICAL EXAMPLES

Next, LC cluster modeling is illustrated by means of two empirical ex-
amples. The analyses are performed with the LC analysis (LCA) pro-
gram Latent GOLD (Vermunt and Magidson, 2000), which implements
both ML and MAP estimation with Dirichlet and inverted-Wishart pri-
ors for multinomial probabilities and error variance–covariance matrices,
respectively. A feature of the program that was used extensively in the
analyses described next is the possibility to add local dependencies by
using information on bivariate residuals. Model selection was based on
BIC; it should be noted that the BIC we use is computed by using the
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log-likelihood value and the number of parameters rather than by using
the L2 value and the number of degrees of freedom.

A. Diabetes Data

The first empirical example concerns a three-dimensional data set in-
volving 145 observations used for diabetes diagnosis (Reaven and Miller,
1979). The three continuous variables are labeled glucose (y1), insulin
(y2), and sspg (steady-state plasma glucose, y3). The data set also con-
tains information on the clinical classification in three groups (normal,
chemical diabetes, and overt diabetes), which makes it possible to com-
pare the clinical classification with the classification obtained from the
cluster model. The substantive question of interest is whether the three
indirect diagnostic measures yield a reliable diagnosis; that is, whether
they yield a classification that is close to the clinical classification.

This data set comes with the MCLUST program and is also used by
Fraley and Raftery (1998a, 1998b) to illustrate their model-based cluster
analysis based on the eigenvalue decomposition described in Equation
(1). The final model they selected on the basis of the BIC criterion was the
unrestricted three-class model, which means that none of the restrictions
that can be specified with their approach holds for this data set.

We used six different specifications for the variance–covariance matri-
ces: class-dependent and class-independent unrestricted, class-dependent
and class-independent diagonal, as well as class-dependent and class-
independent with only the y1–y2 error covariance free. The specification
unrestricted means that all covariances are free; the specification diagonal
means that all covariances are assumed to be zero. The models with only
the y1–y2 error covariance free were used because the bivariate residuals
of both diagonal models indicated that there was only a local dependency
between these two variables. Moreover, the results from the unrestricted
models indicated that the y1–y3 and y2–y3 covariances did not differ sig-
nificantly from zero.

Table 1 reports the BIC values for the estimated one to five class
models. The three-class model that only includes the error covariance
between y1 and y2 and with class-dependent variances and covariances
has the lowest BIC value. Its BIC value is slightly lower than of the class-
dependent unrestricted three-class model, which is Fraley and Raftery’s
final model for this data set. The BIC values in Table 1 show clearly
that models with too-restrictive error structures for a particular data set
overestimate the number of clusters. Here, this applies to the models
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Table 1. BIC Values for Diabetes Example

No. of Clusters

Model 1 2 3 4 5

1. Class-dep. unrestricted #k 5138 4819 4762 4788 4818
2. Class-ind. unrestricted #k 5138 5014 4923 4869 4858
3. Class-dep. diagonal #k 5530 4957 4833 4805 4815
4. Class-ind. diagonal #k 5530 5170 4999 4938 4895
5. Class-dep. #k with only σ12k free 5156 4835 4756 4761 4784
6. Class-ind. #k with only σ12k free 5156 5008 4920 4862 4859

with class-independent error variances and the class-dependent diagonal
model. Therefore, it is important to be able to work with different types
of error structures. Note that the most restrictive model that we used – the
model with a class-independent diagonal error structure – can be seen as a
probabilistic variant of k-means cluster analysis (McLachlan and Basford,
1988).

Table 2 reports the parameters estimates for the three-class model
with class-dependent variance–covariance matrices and with only a local
dependence between y1 and y2. These parameters are the cluster sizes
(πk), the cluster-specific means (µ jk), the cluster-specific variances (σ jk

2),
and the cluster-specific covariance between y1 and y2 (σ12k). The overt
diabetes group (Cluster 3) has much higher means on glucose and insulin
and a much lower mean on sspg than the normal group (Cluster 1). The
chemical diabetes group (Cluster 2) has somewhat lower means on glu-
cose and insulin and a much lower mean on sspg than the normal group.
The reported error variances show that the overt diabetes cluster is much

Table 2. Parameter Estimates for Diabetes Example

Cluster

1 = Normal 2 = Chemical 3 = Overt

Parameter Estimate SE Estimate SE Estimate SE

πk 0.27 0.05 0.54 0.05 0.19 0.03
µ1k 104.00 2.85 91.23 1.06 234.76 14.87
µ2k 495.06 22.74 359.22 6.63 1121.09 58.70
µ3k 309.43 28.06 163.13 6.37 76.98 9.47
σ1k

2 230.09 62.96 76.48 12.93 5005.91 1414.43
σ2k

2 14844.55 3708.65 2669.75 506.55 73551.09 22176.29
σ3k

2 22966.52 5395.90 2421.45 476.65 2224.50 616.43
σ12k 1279.92 420.93 96.46 60.30 17910.71 5423.37
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Table 3. Clinical vs. LC Cluster Classification in Diabetes Example

LC Cluster Class.

Clinical Class. Normal Chemical Overt Total

Normal 26 10 0 36
Chemical 4 72 0 76
Overt 5 0 28 33
Total 35 82 28 145

more heterogeneous with respect to glucose and insulin and much more
homogeneous with respect to sspg than the normal cluster. The chemical
diabetes group is the most homogeneous cluster on all three measures.
The error covariances are somewhat easier to interpret if we transform
them into correlations. Their values are 0.69, 0.21, and 0.93 for Clusters
1, 2, and 3, respectively. This indicates that in the overt diabetes group
there is a very strong association between glucose and insulin, whereas
in the chemical diabetes group this association is very low, and even not
significantly different from zero (σ̂12k/SEσ̂12k = 1.60). Note that the within-
cluster correlation of 0.93 is very high, which indicates that, in fact, the
two measures are equivalent in Cluster 3.

Not only is the BIC of our final model somewhat better than that of
Fraley and Raftery, but also our classification is more in agreement with
the clinical classification: our model “misclassifies” 13.1% of the patients
whereas the unrestricted model misclassifies 14.5%. Table 3 reports the
cross-tabulation of the clinical and the LC cluster classification based on
the posterior class-membership probabilities. As can be seen, some nor-
mal patients are classified as cases with chemical diabetes and vice versa.
The other type of error is that some overt diabetes cases are classified as
normal.

B. Prostate Cancer Data

Our second example concerns the analysis of a mixed-mode data set with
pretrial covariates from a prostate cancer clinical trial (Byar and Green,
1980). Jorgensen and Hunt (1996) and Hunt and Jorgensen (1999) used
this data set containing information on 506 patients to illustrate the use
of the LC cluster model implemented in their MULTIMIX program. The
eight continuous indicators are age (y1), weight index (y2), systolic blood
pressure (y5), diastolic blood pressure (y6), serum hemoglobin (y8), size
of primary tumor (y9), index of tumor stage and histolic grade (y10), and
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serum prostatic acid phosphatase (y11). The four categorical observed
variables are performance rating (y3, four levels), cardiovascular disease
history (y4, two levels), electrocardiogram code (y7, seven levels), and
bone metastases (y12, two levels). The research question of interest is
whether on the basis of these pretrial covariates it is possible to iden-
tify subgroups that differ with respect to the likelihood of success of the
medical treatment of prostate cancer.

The categorical variables are treated as nominal, and for the contin-
uous variables we assumed normal distributions with class-specific vari-
ances. We estimated models from one to four latent classes. The first
model for each number of classes assumes local independence. The other
four specifications are obtained by subsequently adding the direct rela-
tionships between y5 and y6, y2 and y8, y8 and y12, and y11 and y12. This
exploratory improvement of the model fit was guided by Latent GOLD’s
bivariate residuals information, as well as the results reported by Hunt
and Jorgensen (1999).

An indication about the computation time needed for these kinds
of models is that all two-class models took less than 5 seconds to con-
verge, and all four class models took less than 20 seconds on a Pentium
II 350 MHz. Note that here we have a data set with almost 500 cases and
12 indicators. The estimation time increases linearly with the number of
cases and, as long as we do not include too many local dependencies, also
almost linearly with the number of indicators.

Table 4 presents the BIC values for the estimated models. As can be
seen, the two-class model that includes all four direct relationships has the
lowest BIC. A comparison of the various models given a certain number
of classes shows that inclusion of the direct relationship between y5 and y6

(the two blood pressure measures) improves the fit in all situations. The
other bivariate terms improve the fit in the one-, two-, and three-class
models, but not in the four-class model. If we compare the models with

Table 4. BIC Values for Cancer Example

No. of Clusters

Model 1 2 3 4

1. Local independence 23,762 23,112 23,089 23,088
2. Model 1 + σ56k 23,529 22,889 22,883 22,887
3. Model 2 + σ28k 23,502 22,872 22,875 22,893
4. Model 3 + β8.12 23,473 22,861 22,866 22,895
5. Model 4 + β11.12 23,322 22,845 22,855 22,888
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different number of classes for a given error structure, the four-class model
performs best when assuming local independence, the three-class model
when including the y5 and y6 covariance, and the two-class model when
including additional bivariate terms. Thus, if we are willing to include the
y5–y6 effect, a model with no more than three classes should be selected.
If we are willing to include more direct effects, the two-class model is the
preferred one. This shows again that the possibility to work with more
local dependencies may yield a simpler final model.

Table 5 reports the parameter estimates for the two-class model con-
taining all four direct effects. Wald tests for the difference of the means
and probabilities between classes indicate that only the mean ages (µ1k)
are not significantly different between classes. Cluster 2 turns out to have
somewhat higher means on weight (µ2k), blood pressure (µ5k and µ6k),
and serum hemoglobin (µ8k), and lower means on size of tumor (µ9k),
index of tumor stage (µ10k), and serum prostatic acid phosphatase (µ11k).
If we look at the nominal indicators, we see a large difference between
the two classes in the distribution of bone metastases (y12), somewhat
smaller differences in performance rating (y3) and cardiovascular disease
history (y4), and a very small difference in electrocardiogram code (y7).
The direct effects between the indicators are quite strong. They all have
a positive sign except for the effect of y12 on y11.

To investigate the usefulness of the applied technique, Jorgensen and
Hunt (1996) and Hunt and Jorgensen (1999) investigated the strength
of the relationship between the obtained classification and the outcome
of the medical trial. They showed that their two-class solution, which is
similar to the two-class model with local dependencies obtained here,
predicted very well the success of the medical treatment.

8. CONCLUSIONS

This paper described the state-of-art in the field of cluster analysis by using
LC models. Two important recent developments are the possibility of
using various kinds of meaningful restrictions on the covariance structure
in mixtures of multivariate normal distributions and the possibility of
working with mixed-mode data.

The first example demonstrated the use of different types of specifica-
tions for the covariance structure. It showed that models that are too
restrictive may yield too many latent classes. The second example illus-
trated LC clustering with mixed-mode data by using models with and
without local dependencies.
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Table 5. Parameter Estimates for Prostate Cancer Example

Cluster 1 Cluster 2

Parameter Estimate SE Estimate SE

πk 0.45 0.03 0.55 0.03
µ1k 71.38 0.51 71.70 0.43
µ2k 97.51 0.98 100.26 0.83
π1,3k 0.85 0.02 0.94 0.02
π2,3k 0.09 0.02 0.05 0.01
π3,3k 0.05 0.02 0.01 0.01
π4,3k 0.01 0.01 0.00 0.00
π1,4k 0.65 0.03 0.49 0.03
π2,4k 0.35 0.03 0.51 0.03
µ5k 14.18 0.16 14.54 0.16
µ6k 8.00 0.09 8.29 0.10
π1,7k 0.35 0.03 0.33 0.03
π2,7k 0.05 0.02 0.05 0.01
π3,7k 0.14 0.02 0.07 0.02
π4,7k 0.04 0.01 0.06 0.02
π5,7k 0.30 0.03 0.31 0.03
π6,7k 0.12 0.02 0.17 0.02
π7,7k 0.00 0.00 0.00 0.00
µ8k 128.01 1.38 132.21 1.80
µ9k 4.11 0.12 2.88 0.08
µ10k 12.02 0.11 8.88 0.08
µ11k 4.00 0.12 2.11 0.11
π1,12k 0.65 0.03 0.99 0.01
π2,12k 0.35 0.03 0.01 0.01
σ 2

1k 52.35 5.36 43.97 4.15
σ 2

2k 186.60 19.82 166.73 15.89
σ 2

5k 4.98 0.50 6.60 0.59
σ 2

6k 1.79 0.18 2.40 0.21
σ 2

8k 355.82 35.44 325.52 29.47
σ 2

9k 2.91 0.29 1.40 0.14
σ 2

10k 2.05 0.21 1.25 0.13
σ 2

11k 2.56 0.25 0.25 0.03
σ28k 61.98 19.14 47.56 15.12
σ56k 1.82 0.25 2.52 0.30
β8.12 5.76 1.35 5.76 1.35
β11.12 −0.49 0.11 −0.49 0.11
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Some Examples of Latent Budget Analysis
and Its Extensions

Peter G. M. van der Heijden, L. Andries van der Ark,
and Ab Mooijaart

1. INTRODUCTION

Latent budget analysis is a tool for the analysis of two-way contingency
tables. The idea was initiated by Goodman (1974). Clogg (1981) extended
this idea to an asymmetrical latent class model for the analysis of social
mobility tables. Clogg used the following example: Let profession of
the father be variable A, with categories indexed by i (i = 1 , . . . , I);
let profession of the son be variable B, with categories indexed by
j ( j = 1 , . . . , J ); let the latent social class variable be X, with categories
indexed by t (t = 1 , . . . , T). Let πi j be the joint probability of profession
i of the son and profession j of the father. Let π X

t be the probability that a
son belongs to the tth latent social class; π AX

it the conditional probability
that a son has a father with profession i given that he belongs to latent
social class t ; and π BX

jt the conditional probability that a son has profession
j given that he belongs to latent social class t .

The latent class model with T latent classes for a two-way table with
probabilities pi j is

πi j =
T

∑

t=1

π X
t π AX

it π BX
jt , (1)

with all parameters nonnegative and restricted by

T
∑

t=1

π X
t = 1,

I
∑

I=1

π AX
it = 1,

J
∑

j=1

π BX
jt = 1.

In this example, the explanatory variable is profession of the father and
the response variable is profession of the son. Clogg assumed that there
was a mediating (latent) variable, which he interpreted as social class.

107
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He assumed that this latent variable was categorical. By rescaling the
parameters π AX

it into parameters π AX
it by

π AX
it = π X

t π AX
it

/

T
∑

t=1

π X
t π AX

it ,

Goodman (1974) and Clogg (1981) noticed that it is possible to rewrite
Equation (1) into

πi j

πi+
=

T
∑

t=1

π AX
it π BX

jt , (2)

with parameter restrictions

T
∑

t=1

π AX
it = 1,

J
∑

j=1

π BX
jt = 1. (3)

Compared with Model 1, in Model 2 the probabilities that are decom-
posed are conditional probabilities rather than joint probabilities. That
is, the conditional probability πi j/πi+ is the probability that the son has
profession j given that the father has profession i . The parameters are
interpreted as follows: The parameters π AX

it are the probabilities that a
father with profession i belongs to the tth latent social class, and π BX

jt
are the probabilities that the son has profession j given that he belongs
to the tth social latent class. It may be noted that the parameters π BX

jt
have the same interpretation in Model 1 and Model 2.

Model 2 is illustrated graphically in Figure 1. In the social sciences, the
representation in this figure is known as a MIMIC model (i.e., the Multiple
Indicator Multiple Cause model; Goodman, 1974). It may be noted that
the squares in Figure 1 represent the levels of the professions, whereas the
T circles represent the levels of the latent variable. (This should not be
confused with representations of structural equations models often used
in the social sciences, where both circles and squares always represent
variables, and not levels of variables.)

Independently, de Leeuw and van der Heijden (1988) reinvented
Model 2 in the context of an analysis of time budgets. A time budget
of an individual i is the distribution of time over J mutually exclusive ac-
tivities. Hence, the J elements add up to 1 and they are nonnegative, just
like the conditional probabilities (πi j/πi+) in Model 2. The word budget
emphasizes that if time is spent on one activity, it cannot be spent on an-
other activity at the same time. Therefore, they termed Model 2 the latent
budget model (LBM). The T vectors of parameters (π BX

1t , . . . , π BX
Jt ) are
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i=1

i=I j=J

j=1

j=2i=2

t=1

t=2

MIMIC model

Figure 1. Graphic representation of a
MIMIC model.

called latent budgets. Similarly, the I vectors of conditional probabilities
(πi1/πi+, . . . , πi J /πi+) are called expected budgets.

In 1988, the authors were unaware of the fact that the idea of the LBM
had been introduced much earlier by Goodman (1974). Van der Heijden,
Mooijaart, and de Leeuw (1992) pointed out the equivalence between
the LBM and Goodman’s and Clogg’s work. However, they emphasized
a mixture-model interpretation of the LBM. The expected budgets are
mixtures of T latent budgets. The mixture interpretation is illustrated
graphically in Figure 2. In Figure 2 only the expected budgets i and the
latent budgets t are shown. The figure shows that an expected budget i is
a mixture of the T latent budgets. The T mixing parameters for row i are
provided by the parametersπ AX

it . These mixing parameters show for which
proportion the expected budgets are built up from the latent budgets. The
mixing parameters are not revealed by Figure 2.

The LBM with T latent budgets has (I − T)(J − T) degrees of free-
dom. For T = 1, the LBM is equivalent to the independence model be-
cause then pi j/pi+ = π BX

jt = p+ j . For T = min(I, J ), the LBM is sat-
urated, and estimates of expected proportions are equal to observed
proportions.

The LBM is usually estimated by the method of maximum likelihood
under the assumption that the frequencies are generated by a product-
multinomial distribution (although we have also been working on other
estimation methods; see Mooijaart, van der Heijden, and van der Ark,
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i=1

i=I

i=2
t=1

t=2

E

E

E

Mixture model

Figure 2. Graphic representation of a
mixture model.

1999; van der Ark, 1999). Likelihood ratio tests are used to assess the fit of
the LBM against the data and to determine the number of latent budgets
(i.e., T) needed to describe the data adequately.

Clogg (1981) noted that Model 2 is not identified. De Leeuw, van der
Heijden, and Verboon (1990) also discussed the identification problem
of the LBM, and they worked out the situation for T = 2 in some detail.
Writing Model 2 in matrix notation shows the identification problem:
Collect the conditional proportions πi j/πi+ in a matrix Π, the mixing
parameters π AX

it in a matrix A, and the latent budget parameters π BX
jt in

a matrix B; then Model 2 equals

Π = AB′. (4)

It is always possible to rewrite Equation 4 into Π = (AS−1)(SB′) = A∗A∗′ ,
where S is a K × K matrix with each row adding up to 1. The parameters
A and B yield the same expected budgets as A∗ and B∗. Because the el-
ements of each row of S add up to 1, the parameters A∗ and B∗ are also
subject to the equality restrictions in Equation (3). Furthermore, S can
be chosen freely as long as all elements of A∗ and B∗ are nonnegative.
De Leeuw et al. (1990) choose S such that as many parameters as possible
from either A∗ or B∗ are zero, because this facilitated the interpretation.
Van der Ark, van der Heijden, and Sikkel (1999) extended this work for
T > 2. Their view of the identification problem for the LBM is similar to
the identification problem in factor analysis, in which unidentified solu-
tions are usually rotated to simplify interpretation. The common factor
model is called identified because the varimax-rotated solutions are always
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unique in practical situations. Similarly, Van der Ark et al. (1999) called
the LBM identified for some specific choices of S. They proposed an inner
extreme solution, that is, choosing S such that the mixing parameters are
as distinct as possible, which facilitates the interpretation in terms of the
explanatory variable (e.g., the example of Section 2), and outer extreme
solution, that is, choosing S such that the latent budgets are as distinct
as possible, which facilitates the interpretation in terms of the response
variable (e.g., the example in Section 3).

Van der Heijden et al. (1992) discuss various ways in which the pa-
rameters of the LBM can be constrained. They distinguish fixed-value
constraints (e.g., some parameters are fixed to some constant), equality
constraints (see, for some estimation problems, Mooijaart and van der
Heijden, 1992), and situations in which the parameters π AX

it and π BX
jt are

functions of external information. Sometimes these constraints can also
be used as well to identify the LBM (e.g., the example in Section 4).
A later development was to study how latent budget analyses of different
groups could be compared; this was termed simultaneous latent budget
analysis (see Siciliano and van der Heijden, 1994).

The LBM is closely related to correspondence analysis, and de Leeuw
and van der Heijden (1991) describe under what circumstances the LBM
is equivalent to correspondence analysis (see van der Ark and van der
Heijden, 1997; van der Ark et al., 1999; van der Heijden, Gilula, and van
der Ark, 1999). Latent budget analysis is also used in geology, where it is
known as end-member analysis (see Renner, 1993; Weltje, 1997; van der
Heijden, 1994). Many other results, in particular concerning least-squares
estimates, standard errors, and testing procedures, can be found in van
der Ark (1999).

In this chapter, by discussing some examples, we demonstrate some of
the possibilities of the LBM and its extensions. Section 2 shows an example
of latent budget analysis of a two-way table dealing with sentence endings
of the books of Plato. Section 3 illustrates the possibilities of the LBM for
comparing contingency tables in the context of trades started by different
ethnic groups; here, the city of Amsterdam is compared with the city of
Rotterdam. Section 4 shows the possibilities of the LBM for studying how
the school success of pupils is related to explanatory variables such as IQ,
sex, and the profession of the father.

2. THE WORKS OF PLATO

We start with a straightforward application of the LBM. The Greek
philosopher Plato wrote forty-five books. The exact order in which these
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works were written is known approximately, except for the books
Critias, Philebus, Politicus, Sophist, and Timaeus. The objective of this
example is to show that the LBM can be used for seriation, that is, to
find the chronological order in which all 45 books were written. For this
purpose, we used data obtained by Kaluscha (1904), who collected all
“sentence endings” in the 45 books. Each of the last five syllables of a
sentence ending is scored as being “short” or “long,” so that each sen-
tence of each book belongs to one of 25 = 32 categories.

The idea underlying the determination of the chronological order of
the books from the distributions of sentence endings is that the style and
rhythm of the texts changed through time, and that sentence endings
are considered highly relevant with regard to rhythm (Boneva, 1970).
For each book, we had the frequencies of sentence endings, yielding a
matrix of 45 books by 32 sentence endings. The data are in Table 1, where
the chronological order of the 40 “known” books is preserved. The 45
books are considered to be 45 budgets, each containing 32 categories.
The frequencies in these 32 categories express the writing style of the
particular book.

The LBM takes typical styles of writing as latent budgets, and the
different books are then approximated by a mixture of these typical
styles. The mixture-model interpretation (see Figure 2) is most appro-
priate in this context. The data, or an aggregated version, were studied
earlier by, for example, Cox and Brandwood (1959), Atkinson (1970),
and Greenacre (1984).

Latent budget analysis considers the frequencies of sentence endings
of each book as a sample from a multinomial distribution. The LBM
with T = 1 latent budget (independence of works and sentence endings)
has a likelihood ratio chi square of L2 = 3,678 (the degrees of freedom,
df, is 1,364). This model implies that the writing styles in all books are
identical. The LBM with T = 2 latent budgets has a fit of L2 = 2,022
(df is 1,290). This model implies that there are two typical writing styles.
The two estimated latent budgets show what these typical writing styles
are. For each book i , the two mixing parameters π AX

it (t = 1, 2) show
how the budget of book i is built up from these two typical writing styles.
This model described (3,678 − 2,022)/3,678 = 0.45 of the departure from
independence. The LBM with T = 3 latent budgets assumes that there
are three typical writing styles. The fit was L2 = 1,661 (df is 1,218), and
this explained 0.55 of the departure from independence. For the LBM
with T = 4 latent budgets, the fit was L2 = 1,440 (df is 1,148), and this
explained 0.61 of the departure from independence. The model with
T = 2 described a considerable part of the departure from independence.
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Not much more information was extracted from the data by consideration
of more latent budgets.

For seriation, the LBM with T = 2 latent budgets is most appro-
priate. This model yields a unidimensional chronological order of the
books because each book has two mixing parameters, π AX

i1 and π AX
i2 ,

where π AX
i1 + π AX

i2 = 1.0. Therefore, it suffices to interpret only the 45
estimates π̂i1 for studying the differences between the books. We give
a graphical representation of these 45 mixing parameter estimates in
Figure 3 because this simplifies the interpretation. A graphical interpre-
tation of the LBM with two latent budgets is that the 45 books are on a
line segment. The latent budgets are the endpoints of the line segment:
If the writing style of book i matches the typical writing style of latent
budget 1 exactly, then π AX

i1 = 1.0, and π AX
i2 = 0.0. Book i is plotted on the

endpoint of the line segment that coincides with latent budget 1. If the
writing style of book i ′ is built up for 0.5 from the first typical writing style
and for 0.5 from the second typical writing style, then book i ′ is plotted in
the middle of the line segment, exactly in between the two latent budgets.
If one writing style is typical for the earlier years of Plato’s writings, and
the second writing style is typical for the later years, then the line segment
represents the chronological order of the books.

Not all the individual books could be printed into Figure 3. There-
fore, two shaded areas are given. In the shaded area on the left side
(close to the older writing style budget) are all the works with known
chronological order up until Republic 10, with the exception of Laches
and Cratylus. In the shaded area on the right side (close to the newer
writing style budget) are the works with known chronological order from
Laws 2 onward. Figure 2 shows that there are clearly two distinct
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Figure 3. Graphic representation of mixing-parameter estimates for Plato data.
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subgroups within the books with known chronological order: the earlier
works (up until Republic), and the later works (Laws). Within these two
subgroups, however, the chronological order was not clearly shown by
the LBM. From the five undated books, Philebus and Politicus are mostly
built up from the newer writing style budget. From their sentence endings,
these books appear to be similar to the later works. The remaining books,
Critias, Sophist, and Timeaus, do not belong to the later works or to the
earlier works. Their writing style is a mixture of the older writing style and
the newer writing style. This may suggest that these books were written
in between.

In this example, we did not interpret the latent budgets because we
lack the knowledge of sentence endings.

3. ETHNIC DIFFERENCES AMONG PEOPLE STARTING
A TRADE: AN EXAMPLE OF SIMULTANEOUS
LATENT BUDGET ANALYSIS

In The Netherlands, trades are registered with Chambers of Commerce.
Kloosterman and van der Leun (1998), who investigated the way ethnic
groups differ in the types of trades they start, concentrated on the so-
called sheltered sector and on two large cities in The Netherlands, namely
Rotterdam and Amsterdam. The data are presented in Table 2a.

Table 2a. Trades Started in Amsterdam and Rotterdam: Cross-Classification
by Ethnic Group and Type of Trade

Amsterdam Rotterdam

Group 1 2 3 4 5 Total 1 2 3 4 5 Total

Dutch 382 367 788 113 28 1933 323 209 459 91 153 1235
Turks 14 21 3 8 10 56 29 30 2 15 14 90
Moroccans 12 36 2 5 7 62 8 17 2 13 5 45
Antilleans 8 6 2 1 2 19 5 4 3 4 3 19
Surinamese 44 33 33 17 24 151 35 31 28 19 33 146
Cape Verd. 0 0 0 0 0 0 5 1 0 0 3 9
Ghanaians 23 4 4 2 4 37 3 1 0 0 1 5
Other 185 93 82 24 35 419 74 16 19 16 8 133
No info. 146 116 119 39 61 481 42 23 31 7 7 110

Total 814 676 1033 209 426 3158 524 332 544 165 227 1792
Proportions 0.257 0.214 0.327 0.066 0.135 1.000 0.292 0.185 0.304 0.092 0.127 1.000

Note: Types of trade are 1 = wholesale trade; 2 = retail trade; 3 = producer services; 4 = catering
and restaurants; 5 = personal services.



Some Examples of Latent Budget Analysis and Its Extensions 119

Surinam was a former Dutch colony, and the Antilles are still closely
linked administratively to The Netherlands. By their educational system
(language, history), this makes it easier for members of these groups to
integrate into Dutch society. The Turks and Moroccans are large ethnic
groups that originally came in the 1960s and 1970s as so-called guest work-
ers. The Cape Verdeans and the Ghanaians are relatively small ethnic
minorities. The trades speak for themselves. Amsterdam and Rotterdam
differ in that the port of Rotterdam generates considerable employment,
specifically in the wholesale trade and catering services (compare the
marginal column proportions in Table 2a), whereas Amsterdam is both
a tourist and an industrial center. The two cities thus provide the ethnic
groups with a different opportunity structure. One could argue that the
success of the different ethnic groups with respect to the opportunities
offered depends on their network in specific trades, for example, the num-
ber of clients of the same ethnic group, and on their human capital, for
instance, knowledge of the Dutch language or knowing how the trade
as a whole operates in The Netherlands. These different types of human
capital and networks ensure that some ethnic groups are more likely to
start certain specific trades rather than others.

This is where the usefulness of latent budget analysis becomes appar-
ent: As shown in Figure 1, the LBM assumes the existence of a categorical
latent variable, with T states between ethnic group i and trade j , and
these latent states could very well be reflecting human capital and the
networks. In terms of Figure 2, the LBM approximates the distribution of
each ethnic group (observed budget) by a mixture of a number of latent
distributions (latent budgets). The latent budgets may be interpreted as
typical extreme distributions that deviate from the marginal distribution
of trades started in Rotterdam and Amsterdam. The way in which they
deviate reveals how typical sources of human capital and networks create
specific opportunities to start specific trades.

It should be noted that the absolute sizes of the ethnic groups are not
reflected in the parameter estimates. For completeness, absolute sizes are
provided for some of the groups in Table 2b. We concentrated here on
the type of trade that people from ethnic groups choose when they start a
trade, that is, the information provided in Table 2a. Another study would
be to look at the relative proportions of ethnic groups that start trades at
all and then to compare Amsterdam and Rotterdam. The relevant data
are shown in Table 2b.

For Amsterdam, the LBM with T = 1 latent budget (i.e., the indepen-
dence model) has L2 = 299 (df is 28); for T = 2, L2 = 69 (df is 18); for
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Table 2b. Trades Started in Amsterdam and Rotterdam: Absolute Sizes
of the Ethnic Groups

Amsterdam Rotterdam

Trades Trades

Group Sample Prop. No. of Inhab. Sample Prop. No. of Inhab.

Dutch 1,933 0.612 419,698 1,235 0.689 358,425
Turks 56 0.018 30,992 90 0.050 35,598
Moroccans 62 0.020 47,202 45 0.025 24,550
Antilleans 19 0.006 10,501 19 0.011 11,708
Surinamese 151 0.048 69,011 146 0.081 46,679
Cape Verd. 0 0.000 not spec. 9 0.005 not spec.
Ghanaians 37 0.012 not spec. 5 0.003 not spec.
Other 419 0.133 not spec. 133 0.074 not spec.
No info. 481 0.152 not spec. 110 0.061 not spec.

T = 3, L2 = 13 (df is 10). For Rotterdam, for T = 1, L2 = 218 (df is 32); for
T = 2, L2 = 75 (df is 21); for T = 3, L2 = 22 (df is 12; 0.025 < p < .05).
The fit of the LBMs with T = 3 therefore seems adequate. In terms of
Figure 1, the latent states represent three types of human capital and net-
works that lead to specific patterns of trade that are started. The fit indices
should be interpreted with care because many observed frequencies equal
zero. We studied the parameter estimates for the solutions with T = 3,
given in Table 3. We have identified the solution by making the latent
budgets as extreme as possible, that is, by making as many latent budget
parameters (π BX

jt ) equal to zero as possible (see van der Ark et al., 1999).
The latent budgets are most easily interpreted by comparing param-

eter estimates with the marginal proportions p+ j . This shows that for
Amsterdam, the first latent budget is characterized by wholesale trade
(i.e., estimate 0.933 is greater than the marginal proportion 0.257). In
terms of human capital and networks, the first latent state represents
knowledge of the supply side. The second latent budget is characterized
by retail trade (0.635 > 0.214), catering industry (0.175 > 0.066), and per-
sonal services (0.190 > 0.135); this latent state represents knowledge of
the demand side of economy. The third latent budget is characterized by
producer services (0.805 > 0.327) and personal services (0.184 > 0.135);
this latent state represents a good education and access to relevant Dutch
networks.

We interpreted the mixing-parameter estimates π̂ AX
it from graphical

displays similar to Figure 3. Because T = 3, we now use ternary diagrams
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Table 3. Parameter Estimates for LBMs with T == 3 for Amsterdam
and Rotterdam

Amsterdam Rotterdam

Mixing Parameters T == 1 T == 2 T == 3 T == 1 T == 2 T == 3

Dutch 0.212 0.282 0.506 0.329 0.144 0.527
Turks 0.267 0.661 0.071 0.407 0.561 0.032
Moroccans 0.207 0.755 0.038 0.240 0.701 0.058
Antilleans 0.449 0.420 0.131 0.341 0.446 0.213
Surinamese 0.313 0.399 0.288 0.292 0.428 0.280
Cape Verd. 0.582 0.418 0.000
Ghanaians 0.661 0.179 0.160 0.661 0.339 0.000
Other 0.474 0.292 0.235 0.707 0.095 0.198
No information 0.326 0.367 0.308 0.488 0.110 0.402

Latent budgets T = 1 T = 2 T = 3 p+ j T = 1 T = 2 T = 3 p+ j

Wholesale trade 0.933 0.000 0.000 0.257 0.795 0.000 0.000 0.292
Retail trade 0.045 0.635 0.000 0.214 0.096 0.431 0.146 0.185
Producer serv. 0.000 0.000 0.805 0.327 0.000 0.000 0.705 0.304
Catering & rest. 0.022 0.175 0.011 0.066 0.108 0.259 0.000 0.092
Personal serv. 0.000 0.190 0.184 0.135 0.000 0.310 0.149 0.127

(see van der Ark and van der Heijden, 1997). Figure 4(a) gives the plot of
the parameter estimates for the LBM with T = 3 latent budgets for the
ethnic groups in Amsterdam. The vertices of the triangle represent
the latent budgets. The upper vertex represents the first latent budget,
the right-hand vertex represents the second latent budget, and the left-
hand vertex represents the third latent budget. The side opposite a vertex
represents the area where the corresponding mixing parameters (π AX

it )
are zero. The expected budgets can be depicted in the diagram, and their
mixing parameters determine the position in the diagram; that is, the po-
sition of an expected budget in the diagram is π AX

i1 times the distance
from the bottom side to the upper vertex, π AX

i2 times the distance from
the left-hand side to the right-hand vertex, and π AX

i3 times the distance
from the right-hand side to the left-hand vertex.

Figure 4(a) reveals that, more than average, the Dutch currently start
in the third latent budget (latent state for good education and access to
Dutch networks), whereas Ghanaians, Antilleans, Turks, and Moroccans
are ordered between the first latent budget (latent state for supply side)
and the second latent budget (latent state for the demand side). The
Surinamese are intermediate between the Dutch and the other ethnic
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groups. This might be explained by the fact that the Surinamese form an
ethnic group that are reasonably well integrated in Dutch society.

In Rotterdam [Figure 4(b)], the graphical representation is very sim-
ilar to that in Amsterdam. The first latent budget is characterized by
wholesale trade and to some extent by catering; the second latent budget
by retail trade, catering, and personal services; and the third latent budget
by producer services and some personal services. Again, the Dutch start
trades predominantly in the third latent budget; the Ghanaians, Cape
Verdeans, Turks, and Moroccans are ordered between the first and sec-
ond latent budgets; and the Surinamese and now also the Antilleans are
intermediate between the Dutch and the other ethnic groups.

Although there are differences between the solutions of Amsterdam
and Rotterdam, the similarities are striking. Therefore, we investigated
whether a more parsimonious solution, obtained by imposing equality re-
strictions to the parameter estimates, could describe the data. This is done
in simultaneous latent budget analysis (Siciliano and van der Heijden,
1994). Because the Cape Verdeans did not start any trades in Amsterdam,
we deleted them from the table of Rotterdam, and we analyzed a table
of 2 (cities) × 8 (ethnic groups) × 5 (trades).

In a first analysis, we imposed the latent budget parameters (π BX
jt )

to be equal for Rotterdam and Amsterdam. Thus, the latent budgets for
Amsterdam and Rotterdam are equivalent, but the way in which ethnic
groups make use of them may differ. In terms of Figure 1, this implies that
the ethnic groups in Amsterdam have different sources of human capital
and networks than the ethnic groups in Rotterdam, but the way in which
this human capital leads to starting trades is the same in both cities. The
LBM with T = 3 has a fit of L2 = 48.3 (df is 26).

In a second analysis, we imposed equality of the mixing parame-
ters (π AX

it ) for both Rotterdam and Amsterdam. Thus, the latent bud-
gets of Amsterdam and Rotterdam are different, but the way in which
they are mixed by π AX

it is identical. In terms of Figure 1, this means that
the ethnic groups in both cities have the same human capital and net-
works, but this leads to different trades in Amsterdam than in Rotterdam.
Because the opportunities of the two cities differ (compare their marginal
proportions), the specific latent budget estimates for Amsterdam and
Rotterdam are not expected to be equal when we define the estimates
of the mixing probabilities as equal. The LBM with T = 3 latent budgets
has an adequate fit of L2 = 41.8 (df is 30; p > .05). Given the worse fit
of the solution with equality restrictions on latent budget parameters,
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it comes as no surprise that the fit for T = 3 was not adequate if we
imposed the restriction that both the mixing parameters and the latent
budget parameters are equal in Amsterdam and Rotterdam: L2 = 84.1
(df is 42).

First, we interpreted the solution with equality restrictions on the
mixing parameters (π AX

it ; see Table 4a), and next the solution with
equality restrictions on the latent budget parameters (π BX

jt ; see
Table 4b).

In Table 4a, the first latent budget is characterized by wholesale trade,
although to a larger extent for Rotterdam than for Amsterdam. In
Amsterdam, this is compensated for by larger estimates for all other
trades, except for catering. In the second latent budget, retail dominates,
particularly in Amsterdam (together with wholesale trade), whereas in
Rotterdam catering and personal services are larger. The third latent
budget is characterized by producer services, with personal services a bit
larger in Amsterdam, whereas retail is a bit larger in Rotterdam. We found
it difficult to interpret these small (but significant) differences between
Amsterdam and Rotterdam substantively. Figure 4(c), which shows the
mixing-parameter estimates, is quite similar to Figures 4(a) and 4(b). The

Table 4a. Homogeneous Mixing Parameters in Amsterdam and Rotterdam

Amsterdam Rotterdam

Mixing Parameters T == 1 T == 2 T == 3 T == 1 T == 2 T == 3

Dutch 0.264 0.185 0.551 0.264 0.185 0.551
Turks 0.349 0.627 0.024 0.349 0.627 0.024
Moroccans 0.196 0.775 0.029 0.196 0.775 0.029
Antilleans 0.396 0.444 0.160 0.396 0.444 0.160
Surinamese 0.295 0.416 0.289 0.295 0.416 0.289
Ghanaians 0.793 0.120 0.086 0.793 0.120 0.086
Other 0.635 0.159 0.206 0.635 0.159 0.206
No info. 0.409 0.262 0.329 0.409 0.262 0.329

Latent budgets T = 1 T = 2 T = 3 p+ j T = 1 T = 2 T = 3 p+ j

Wholesale trade 0.682 0.102 0.000 0.257 0.855 0.000 0.062 0.292
Retail trade 0.164 0.543 0.083 0.214 0.052 0.461 0.126 0.185
Producer serv. 0.072 0.000 0.701 0.327 0.000 0.020 0.674 0.304
Catering & rest. 0.044 0.167 0.031 0.066 0.093 0.259 0.000 0.092
Personal serv. 0.038 0.188 0.185 0.135 0.000 0.259 0.139 0.127

Note: Table gives parameter estimates for simultaneous latent budget analysis with T = 3 for
Rotterdam and Amsterdam.
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Table 4b. Homogeneous Latent Budgets in Amsterdam and Rotterdam

Amsterdam Rotterdam

Mixing Parameters T == 1 T == 2 T == 3 T == 1 T == 2 T == 3

Dutch 0.243 0.215 0.542 0.326 0.189 0.486
Turks 0.307 0.622 0.072 0.398 0.572 0.030
Moroccans 0.240 0.720 0.041 0.233 0.714 0.054
Antilleans 0.510 0.349 0.141 0.334 0.461 0.205
Surinamese 0.358 0.346 0.296 0.290 0.437 0.274
Ghanaians 0.716 0.112 0.172 0.657 0.343 0.000
Other 0.542 0.201 0.257 0.702 0.122 0.186
No info. 0.374 0.299 0.327 0.480 0.168 0.352

Latent budgets T = 1 T = 2 T = 3 p+ j T = 1 T = 2 T = 3 p+ j

Wholesale trade 0.811 0.000 0.000 0.257 0.811 0.000 0.000 0.292
Retail trade 0.113 0.545 0.078 0.214 0.113 0.545 0.078 0.185
Producer serv. 0.000 0.000 0.756 0.327 0.000 0.000 0.756 0.304
Catering & rest. 0.076 0.205 0.000 0.066 0.076 0.205 0.000 0.092
Personal serv. 0.000 0.250 0.167 0.135 0.000 0.250 0.167 0 0.127

Note: Table gives parameter estimates for simultaneous latent budget analysis with T = 3 for
Rotterdam and Amsterdam.

Dutch predominate particularly in the third latent budget; Surinamese
are situated between the Dutch and the other ethnic groups, ordered as
Moroccans, Turks, Antilleans, then Ghanaians.

Table 4b shows the parameter estimates for the LBM with homoge-
neous latent budgets. Again, latent budget 1 is characterized by whole-
sale trade; latent budget 2 by retail trade, catering and restaurants, and
personal services; and latent budget 3 by producer services and per-
sonal services. The mixing-parameter estimates are displayed in Figure
4(d). For each ethnic group, we found the Amsterdam label close to the
Rotterdam label. For interpreting small distinctions, we concentrated on
more specific characterizations by specific budgets. The Amsterdam Dutch
are to a larger extent characterized by latent budget 3, the Amsterdam
Turks to a larger extent by latent budget 2, and the Amsterdam Antilleans
by latent budget 1, whereas the Rotterdam Antilleans are characterized
more by latent budget 2, the Rotterdam Surinamese by latent budgets 2
and 3, the Amsterdam Ghanaians by latent budget 1, Rotterdam other
migrants more by latent budget 1, and Rotterdam “no information” more
by latent budgets 1 and 3. For more information, we refer to Kloosterman
and van der Leun (1998).
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4. SOCIAL MILIEU AND SECONDARY EDUCATION:
AN EXAMPLE OF CONSTRAINED LATENT BUDGET ANALYSIS

At the age of 11–12 years, children in The Netherlands go from primary
school to secondary school. Distinct types of secondary education can
be chosen, with two main types: vocational types of education and gen-
eral types of education. Choice depends on such aspects as capacities of
children, interests, advice of the primary school teacher, and advice of
parents. In educational research, much interest is directed to the way in
which the social milieu of a child influences this choice. In this example,
we investigated this question by using the LBM. The best interpretation
of the LBM in this context is in terms of the MIMIC model (see Figure 2).
Three explanatory variables, that is, sex, social milieu, and IQ, yield
(as shown by the mixing parameters, π AX

it ) an individual’s human capital
(the latent variable, having T classes), and this human capital provides
opportunities to go to a specific level of education (as shown by the latent
budget parameters, π BX

jt ).
In 1977 and 1981, data were collected from more than 37,000 children

about their social milieu and aspects regarding their secondary educa-
tion. Distinct variables were collected; for a description, see Statistics
Netherlands (1982) and Meester and de Leeuw (1983). The variables we
used in our analysis are the scores on an intelligence test, social milieu
(profession of father), sex, and the level of education attained in 1981,
that is, after 4 years of secondary education. The intelligence test used was
the (Dutch) Test for Intellectual Capacity (TIC), a figure exclusion test
that consists of 33 items. The TIC scores were recoded by Meester and de
Leeuw (1983) as 1 for 1–14 correct items, 2 for 15–17 correct, 3 for 18–20
correct, 4 for 21–23 correct, 5 for 24–26 correct, 6 for 27–29 correct, and
7 for 30–33 correct items. The social milieu of the family is measured by
the profession of the father, in six categories: category 1 is skilled and un-
skilled laborers, 2 is farmers and farm laborers, 3 is shopkeepers, 4 is lower
employees, 5 is middle employees, and 6 is higher employees and scien-
tific and free professions. The last explanatory variable is the dichotomous
variable of sex. The response variable is the level of education attained
after 4 years, and these levels are 1, dropped out; 2, junior vocational
education (LBO); 3, general education, medium level (MAVO); 4, gen-
eral education, high level (HAVO); 5, general education, preparatory to
university (VWO); and 6, senior vocational training ((M)BO). Meester
and de Leeuw (1983) eliminated all children having no TIC score (16,433
children). According to them, this elimination is not crucial because
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having no TIC score seemed to have been a random process. Further-
more, children with a value missing on the level of education attained
(38) or on a type of education called extraordinary lower education (646)
were eliminated from the sample. Children having a father who is un-
employed or medically unfit for work were also eliminated (6,190). This
last elimination is more crucial, and it should be kept in mind that our
analysis does not discuss children having these characteristic. Following
these selections there remained a sample of 16,236 children. The data are
given in Table 5.

We analyzed the data with the LBM by coding the levels of the ex-
planatory variables sex, social milieu, and TIC as 2 × 6 × 7 = 84 rows
and the levels of the response variable level of education attained as six
columns. Let the variable sex be A, indexed by i ; let social milieu be C, in-
dexed by k; let TIC be F , indexed by p; and let the response variable level
of education attained be B, indexed by j . Thus, the LBM can be rewritten
by replacing the index i in Model 2 by ikp, so that the LBM becomes

πikpj

πikp+
=

T
∑

t=1

π ACFX
ikpt π BX

jt .

The LBM with T = 1 (independence) is equivalent to the model in
which the variables sex, social milieu, and TIC are dependent, and inde-
pendent from level of education attained. This model may be considered
as our baseline model. It has a fit of L2 = 4,612, with df = 415. The LBM
with two or more latent budgets can be interpreted as a MIMIC model
(Figure 1). The MIMIC model emphasizes that each child has T proba-
bilities π ACFX

ikpt of falling into the latent classes, which can be interpreted
as the individual’s human capital. These T probabilities are determined
by the levels of explanatory variables A, C, and F . Once a child is in one
of the T latent classes, there are J probabilities π BX

jt of attaining each of
the levels of education.

A sensible approach to the analysis is first to determine the number
of latent classes T that is needed to give an adequate description of the
data. For T = 2, L2 = 1,113 (df is 328); for T = 3, L2 = 441 (df is 243);
for T = 4, L2 = 226 (df is 160); and for T = 5, L2 = 116 (df is 79). All the
models have to be rejected at p = .05. To check whether this could be due
to the specific form of our models, we studied the residuals of the least
restricted LBM, that is, the LBM with T = 5. We found no intelligible
patterns in the residuals or specific outlier cells, so we assumed that the
misfit of the models is due to a large sample size.



Table 5. The SMVO Data

School Type Boys Girls

SES TIC 1 2 3 4 5 6 1 2 3 4 5 6

1 1 43 126 23 5 2 17 28 87 24 13 3 35
2 41 172 58 20 9 28 29 131 57 15 0 74
3 50 271 83 58 24 87 67 209 128 59 6 141
4 64 268 131 93 44 111 64 200 157 95 34 194
5 43 202 121 113 47 109 35 163 177 105 39 201
6 11 78 60 62 43 78 20 54 106 92 48 103
7 4 15 20 23 27 19 2 10 22 40 38 28

2 1 3 13 1 1 1 8 2 8 5 1 0 5
2 3 18 9 0 0 10 2 14 10 4 0 12
3 2 18 12 15 3 23 5 18 16 19 3 26
4 8 25 15 14 9 47 0 18 23 21 8 46
5 5 25 16 12 16 35 0 13 28 21 15 39
6 2 4 7 20 11 22 5 6 19 37 15 30
7 0 3 2 5 7 9 0 4 4 12 17 10

3 1 11 17 6 1 1 10 7 12 11 2 0 8
2 9 37 11 6 2 10 6 29 11 5 1 11
3 23 59 26 12 6 29 16 43 30 19 4 38
4 12 72 34 23 14 38 18 39 39 36 13 49
5 11 40 26 37 25 36 16 32 54 54 25 39
6 7 20 26 25 30 25 11 12 28 41 20 24
7 3 1 7 9 12 9 2 3 3 16 7 3

4 1 9 29 13 4 1 4 3 15 6 3 0 10
2 9 38 21 5 4 13 10 24 26 7 2 29
3 12 56 47 37 15 27 12 54 40 37 15 35
4 11 62 52 54 26 43 15 39 64 56 27 61
5 12 48 62 55 37 30 9 31 54 87 44 52
6 6 15 33 40 45 24 7 11 35 49 39 39
7 3 4 7 17 23 7 2 3 5 23 26 9

5 1 5 25 14 9 3 9 6 20 8 3 1 12
2 8 26 30 23 7 11 9 22 24 19 4 30
3 13 60 65 39 35 50 10 42 50 44 33 59
4 20 79 91 94 71 70 17 58 97 82 55 79
5 11 58 70 95 95 63 11 44 89 103 101 70
6 9 39 44 71 107 40 5 17 46 117 104 47
7 4 7 9 28 57 12 2 3 28 49 70 21

6 1 4 6 10 6 4 3 5 2 6 1 1 5
2 7 14 15 11 5 12 4 3 6 18 2 11
3 5 31 34 39 21 23 5 16 24 33 16 21
4 10 16 45 54 52 36 9 16 44 83 46 29
5 7 16 44 71 105 28 7 7 40 80 83 27
6 3 12 24 40 85 19 8 7 32 66 100 15
7 3 4 9 16 52 9 1 3 10 29 51 1

Notes: School types are 1, drop out; 2, LBO; 3, MAVO; 4, HAVO; 5, VWO; 6, (M)BO. Social
milieu is 1, skilled and unskilled laborers; 2, farmers and farm laborers; 3, shopkeepers; 4, lower
employees; 5, middle employees; 6, higher employees. TIC scores are number of items correct: 1,
1–14; 2, 15–17; 3, 18–20; 4, 21–23; 5, 24–26; 6, 27–29; 7, 30–33.

128



Some Examples of Latent Budget Analysis and Its Extensions 129

Given the large sample size, we were satisfied with the description that
the LBM offers with three latent budgets. Although significant, the dis-
crepancy between the L2 = 441 and df = 243 is not enormous; the model
describes 0.904 of the departure from the independence model (T = 1)
(i.e., 0.904 = (4,612 − 441)/4,612). Because the gain in percentage mov-
ing from the LBM with three to the LBM with four latent budgets is
relatively small, we choose the LBM with three latent budgets to exam-
ine more carefully.

The latent budget parameter estimates (π B̂X
jt ) are shown in Table 6.

In the first latent budget children go predominantly into lower vocational
training (LBO) or drop out, and to a lesser extent they go into medium
general education (MAVO) and (M)BO. In the second latent budget, chil-
dren go predominantly into higher general education (HAVO and VWO),
and in the third latent budget they go predominantly into medium and
higher general education (MAVO and HAVO) and higher vocational train-
ing (MBO), but not to general, university preparatory education (VWO).

For the study of the mixing-parameter estimates, we give plots of the
estimates separately for each TIC score p and each sex i . This gives 7 ×
2 = 14 plots, shown in Figure 5. In each plot, we have set out horizontally
the six levels of social milieu k and vertically the probability of going to
one of the latent budgets t . Each plot has 18 points; namely, children in
each of the six levels of social milieu can go to each of the three latent
budgets; points belonging to the same latent budgets are connected, so
that each plot has three lines. In Figure 5, the first latent budget is indicated
by the line with the circles, the second latent budget is indicated by the

Table 6. Latent Budgets Estimates for T == 1 (Independence) and T == 3 for
Educational Level after 4 Years of Secondary School

Panel 1 Panel 2

Group T == 1 t == 1 t == 2 t == 3 t == 1 t == 2 t == 3

1. Drop out 0.063 0.160 0.014 0.011 0.177 0.025 0.005
2. LBO 0.226 0.658 0.000 0.000 0.701 0.038 0.006
3. MAVO 0.192 0.121 0.090 0.325 0.092 0.090 0.331
4. HAVO 0.188 0.000 0.367 0.232 0.000 0.337 0.228
5 VWO 0.142 0.000 0.530 0.000 0.015 0.500 0.000
6. (M)BO 0.189 0.061 0.000 0.432 0.015 0.011 0.430

π X
t 1.000 0.343 0.267 0.389 0.304 0.274 0.422

Note: Panel 1, unconstrained estimates T = 3; panel 2, estimates T = 3 constrained by the
multinomial logit model.
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Figure 5. Unconstrained mixing-parameter estimates for each TIC score group and
each sex.
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Figure 5 (continued)

line with the squares, and the third latent budget is indicated by the line
with the triangles.

We chose to display the parameters in this way for the following rea-
sons: First, if sex had no influence on the probability of going to latent
budgets, then plots on the left (boys) would be identical to plots on the
right (girls). This way of displaying the parameters clearly shows the influ-
ence of sex if we look at how each pair of plots differs. Second, if the social
milieu had no influence on the probability of going to the latent budgets,
then all lines would be horizontal, and departures from this would be
easily displayed.
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It is clear that the probability of going to a latent budget will be strongly
influenced by the TIC score because the levels attained not only reveal
differences between different types of education (general vs. vocational),
but also between higher and lower types of education. Therefore, in going
from the plots at the top (TIC score equals 1) to the bottom (TIC score
equals 7), the line with circles drops generally; this is not surprising be-
cause this line shows the probability of going to latent budget 1, which is
the budget in which 0.658 of the children go to LBO and 0.160 drop out:
children more often drop out or go to LBO when their TIC score is lower.

There are many interesting aspects in these plots. For instance, in all
levels of TIC, children with fathers who are medium or higher employees
(5 and 6) have a much higher probability than average of going to latent
budget 2, which is the budget for higher general education (HAVO, 0.367)
and university preparatory education (VWO, 0.530). Their probability of
going to budget 1 (drop out and LBO) is much lower. The reverse holds
for children whose father is a skilled or unskilled laborer: Given their
TIC score, their probability of going to budget 1 is in general the highest.
On average, children whose fathers are farmers (2) are more likely than
average, given their TIC score, to go to latent budget 3, where they have
a high probability of following medium vocational training ((M)BO). It
may be noted that the latent budget parameters, being probabilities, can
be interpreted easily; they not only show tendencies in the data (e.g., girls
go on average less to budget 1 than boys), but also show how strong the
effects are.

Van der Heijden et al. (1992) showed how the factorial structure in the
explanatory variables could be used to investigate the effects of each of
the factors and their interactions. This is done by means of a multinomial
logit model for the mixing parameters π ACFX

ikpt , that is,

π AXFX
ikpt = exp

(

M
∑

m=1

xikpmγmt

) /

T
∑

t=1

exp

(

M
∑

m=1

xikpmγmt

)

. (5)

The design matrix X has I × K × P rows and M columns, and these M
columns represent dummy variables for the main effects for factors A,
C, and F; for their two-way interaction effects A× C, A× F , and C × F;
and their three-way interaction A× C × F . The elements γmt are parame-
ters for column m and latent budget t . To identify the model, γm1 = 0. For
more details, see van der Heijden et al. (1992), who also explain the rela-
tionship between these models and loglinear models with latent variables.

We have systematically imposed all possible constraints on the mix-
ing parameters (π ACFX

ikpt ). The most restrictive LBM has only main effects



Some Examples of Latent Budget Analysis and Its Extensions 133

A, C, and F . This LBM turns out to fit reasonably well, with L2 = 627
(df is 379). Forsaking the model with unconstrained mixing parameters
(π ACFX

ikpt ) for the model with only main effects thus gains us 379 − 243 =
136 df, at the expense of a loss of fit of 627 − 441 = 186.

The latent budget parameter estimates are similar to those for the
unconstrained model with three latent budgets (see Table 6). We studied
the estimates by deriving averages of mixing parameters π̂ AX

it ≡ π̂i+++t/

π̂i++++, π̂CX
kt ≡ π̂+k++t/π̂+k+++, and π̂ F X

pt ≡ π̂++p+t/π̂++p++. Thus, we
obtained parameters for sex only, for social milieu only, and for TIC only.
Plots of these parameter estimates are given in Figure 6. The plot for TIC
score shows that the probability of going to latent budget 1 (mainly LBO,
drop out) decreased as TIC increased; the probability of going to latent
budget 2 (mainly VWO, HAVO) increased as TIC increased; and the
probability of going to latent budget 3 (mainly MAVO, HAVO, (M)BO)
increased from TIC 1 to 4, and then decreased smoothly. In the plot for
social milieu, the probability of going to budget 1 is low for children of
farmers (2) and medium and higher employees (5, 6), the probability to go
to budget 2 increased rapidly for children of lower to higher employees,
and the probability of going to budget 3 was above average for children of
farmers and below average for children of higher employees. In the plot
for sex, we found that there is no difference in the probability of boys and
girls going to latent budget 1. However, there was a difference in their
probability of going to latent budgets 2 and 3: for boys, these probabilities
were approximately equal, whereas girls went more often to latent budget
3 and less often to latent budget 2.

Latent budget analysis offered considerable insight into these data.
The MIMIC-model interpretation that we used showed with which prob-
abilities children, given a specific background, go to specific latent bud-
gets. These latent budgets specified the probabilities of reaching specific
final levels of education. In this example, the parameters were also very
easy to interpret, so that it was easy to indicate the processes that operate
in the relationship between explanatory variables such as TIC, sex, and
social milieu on the one hand, and secondary education on the other. The
constraints allowed a simplified interpretation.

5. CONCLUSIONS

The LBM closely answered specific research questions that are inter-
esting from a substantive point of view. For Plato’s data, we assumed
that there were a few typical (latent) writing styles, and each book is a
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Figure 6. Constrained mixing-parameter estimates for the TIC score groups, for the
social milieu groups, and the sexes.

mixture of these typical styles. This assumption is related directly to the
parameterization of LBM. In this example, the LBM was interpreted
as a mixture model. In the ethnic entrepreneur example and the secon-
dary education example, we assumed the existence of a latent variable
mediating between the explanatory variable and the response variable.
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In both examples, the interpretation of this latent variable was human
capital. The LBM was interpreted as a MIMIC model.

An important asset of the LBM is the simple interpretation of the
parameters, also for nonstatisticians. The merits of the LBM are most
evident when the row variable can be interpreted as the explanatory vari-
able and the column variable can be interpreted as the response variable.
Otherwise, a (symmetrical) latent class model is more suitable.
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